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Heliogyro Description 

Proposed by Richard MacNeal in 1968.  NASA considered it for a Comet 

Halley rendezvous mission in the 1970s.  Some additional design work 

done at Carnegie Melon during the 1990s and MIT in the 2000s. 

 CONCEPT: 

• Several extremely long 

blades spun about a 

central hub 

SAIL STIFFENING: 

• Centrifugal 

STOWAGE/DEPLOYMENT: 

• Stored on spools 

• Deployed with centrifugal 

force 

ATTITUDE CONTROL: 

• Via cyclic and collective 

blade pitch maneuvers 

• Similar to a helicopter 
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Heliogyro Maneuvers 
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[MacNeal 1967, 1978] 
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Heliogyros:  PROS and CONS 

PROS: 

• Spools make blades easy to stow and deploy 

• Easier to scale to large sizes than square or disk sails 

• Eliminates non-propulsive structure → less mass → 

higher acceleration/larger payload 

• Propellantless attitude control 

CONS: 

• Difficult to accurately ground test 

(gravity ~70x > centrifugal force) 

• Blade dynamic stability poorly 

understood 

• Controlling blade twist is 

particularly difficult 

• Expect very little material 

damping and stiffness in twist 

Lead-Lag Bending 

Flap Bending 

Twist 
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The Membrane Ladder: 

Uncoupled Twist Finite Element Method 
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The Membrane Ladder’s Assumptions: 

Uncoupled Twist Finite Element Method 
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High-performance, Enabling, Low-Cost, 

Innovative, Operational Solar Sail (HELIOS) 

*Characteristic acceleration is defined using solar radiation pressure at 1AU 

with the heliogyro’s rotational plane normal to the sun. 

• 0.007mm/s2 for IKAROS, the only solar sail ever flown [Funase 2011]  

• 0.07mm/s2 for Dawn’s ion drive [dawn.jpl.nasa.gov]. 

Sail material Al/Mylar 

Sail Thickness 2.54 μm 

# of blades 6 

Blade chord 0.765 m 

Blade radius 250 m 

Sail area 1148 m2 

Sail system mass 14.6 kg 

Bus mass 4.9 kg 

Total mass 19.5 kg 

Sail reflectivity 0.85 

Characteristic  

acceleration 

0.5 mm/s2 

Spin period 3 min 

Orbit LEO/GTO 

HELIOS sail-craft 

with ESPA envelope 
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Settling Time Requirement 

• One equatorial orbit raising scheme [MacNeal 1967] requires 4 

maneuvers per orbit. 

• We use a settling time goal of 1/8th of an orbit or 4 revs (12 min) 

for the HELIOS mission in a 1000-1400 km LEO.  

• The most challenging environment for solar sails is equatorial 

LEO, but… 

• There are more ride-share opportunities at this orbit. 
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PDFF twist controller performance at blade root 

All maneuvers settle well within HELIOS 

mission requirement of 4 revolutions 
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Hanging-blade Experimental Setup 

2.4m Vacuum 

Sphere 

• Pmin ~ 50mTorr 

Two Laser Doppler 

Vibrometers 

• Measure velocity 

• Twist = difference 

• Flap = average 

Piezoelectric 

Actuator 

• 1 for Flap 

• 1 for Twist 

Hanging Test 

Blade 

• 2” x 84” 

Actuator 

Battens 

with 

retro-

reflective 

laser 

targets 
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Test Outline 

Test 

Article 

Material Width 

(in) 

Crumpled Edge 

Reinforcing 

1 1 mil Kapton 2 no no 

2 0.1 mil Mylar 2 no no 

3 0.1 mil Mylar 2 yes no 

4 0.1 mil Mylar 2 no yes 

5 0.1 mil Mylar 2 yes yes 

Goals 

• Validate the membrane-ladder finite element model 

• Estimate the material damping 

• Qualitatively explore blade construction factors with 

several test articles: 
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#1:  2”, 1mil, Al Kapton, 4 Tape Battens 

Sail: 

• 3.85g 

4 Battens: 

• 0.24g 

• 6% increase in total sail mass 

Total: 

• 4.10g 

Fairly flat, but too thick and heavy 
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#2:  2”, 0.1mil, Al Mylar, 4 Tape Battens 

Sail: 

• 0.39g 

4 Battens: 

• 0.30g 

• 79% increase in total sail 

mass 

Total: 

• 0.70g 

 

Unacceptable blade 

cambering/curl due to 

residual stress 

→ Not tested 
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#3:  2”, 0.1mil, Al Mylar, hand-crumpled 

Sail: 

• 0.39g 

4 Battens: 

• 0.30g 

• 79% increase in total sail 

mass 

Total: 

• 0.70g 

 

Crumpling randomizes the 

residual stress 

→ improved flatness 
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#4:  2”, 0.1mil, Al Mylar, Edge Reinforcing 

Sail: 

• 0.39g 

4 Battens: 

• 0.30g 

• 79% increase in total sail mass 

Edge Reinforcing: 

• 1.45g 

• 375% increase in total sail mass 

Total: 

• 2.13g 

 

Still a lot of cambering between 

battens 

Huge mass penalty 
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#5:  2”, 0.1mil, Al Mylar, 

Edge Reinforcing, Crumpled 

Sail: 

• 0.39g 

4 Battens: 

• 0.30g 

• 79% increase in total sail mass 

Edge Reinforcing: 

• 1.45g 

• 375% increase in total sail mass 

Total: 

• 2.13g 

 

Flattest specimen 

Significant mass penalty 
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Experiment

SOCIT Fit

FEM

Experiment

Theory

Experimental and theoretical FRFs at the blade 

midpoint, Article #3 (crumpled) 

Flap response with flap actuator Twist response with twist actuator 

5.5% RMS difference in 

modal frequency from 

theory (first 5 modes) 

11.5% RMS difference in 

modal frequency from 

theory (first 4 modes) 

Higher than 

expected 

damping 
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Summary 

# Material Crump. Edge 

Reinf. 

Mass 

(g) 

Agreement 

with Theory 

 Flap     Twist 

1st Mode 

Damping 

 Flap     Twist 

1 1mil Kapton no no 4.10 N/A 80% N/A 3.3% 

2 0.1mil Mylar no no 0.70 N/A N/A N/A N/A 

3 0.1mil Mylar yes no 0.70 95% 89% 5.2% 17.5% 

4 0.1mil Mylar no yes 2.13 92% 76% 4.4% 5.0% 

5 0.1mil Mylar yes yes 2.13 96% 88% 3.5% 6.1% 
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Conclusions 

• The HELIOS design can achieve mission-enabling accelerations 

and is a good stepping-stone for future heliogyro missions. 

• Blade pitch control is not as difficult as originally assumed. 

– A blade pitch motor at the root with a PDFF controller is 

effective at controlling blade twist. 

– Experimental results agreed surprisingly well with the FEM 

theory. 

– Damping is higher than expected. 

• Blade construction is a significant challenge. 

– Residual stresses cause significant curling in ultra-thin 

membranes. 

– Crumpling is an easy, mass-efficient way to improve flatness, 

but it lowers optical efficiency. 
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Questions? 
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Variation of Damping with Pressure 
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